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DATA-CONDITIONED ENCRYPTION 
METHOD 

RELATED APPLICATION 

This application is based on and claims priority to US. 
Provisional Patent Application Ser. No. 61/297,722, ?led on 
Jan. 22, 2010 and entitled GRANULAR PERMUTATION 
CIPHER, the entire contents of which are hereby incorpo 
rated by reference. 

BACKGROUND 

1. Field 
The present application relates, generally, to data encryp 

tion and, more particularly, to conditioning of data to be 
substantially immune to frequency analysis. 

2. Description of the Prior Art 
In an age that depends on the private exchange of sensitive 

information, it is critical to have encryption methods that are 
fundamentally secure and relatively easy to implement. Such 
methods should also be reasonably immune from ever-in 
creasing computational power; brute force and nuanced cryp 
tanalysis have become relatively easy to apply. To combat 
these and other attacks, the key lengths have become longer, 
and encryption/decryption algorithms have become signi? 
cantly more complicated. 

Encryption methods date back to at least the time of the 
ancient Greeks, and now take a multitude of forms. The most 
robust modern approaches (e.g., Advanced Encryption Stan 
dard and Triple Data Encryption Standard) increase effective 
ness by combining basic methods, often including crypto 
graphic primitives such as hash functions and 
cryptographically secure pseudorandom number generators 
(CSPRNGs), into cryptographic systems. Indeed, given the 
often complicated combinations of techniques and operations 
comprising modern ciphers, it is sometimes dif?cult to cat 
egorize methods that combine fundamental algorithmic con 
cepts, such as those underlying block ciphers, stream ciphers, 
substitution, transposition, and permutation ciphers. 

It is generally accepted that there is an inverse relation 
between what is secure in a provable sense and what is secure 
from a practical standpoint. It is, therefore, a common goal in 
cryptography to ?nd methods that can rigorously demonstrate 
security, while at the same time being practical to implement. 
It is also critical that such methods not rely on algorithmic 
secrecy, but rather remain open to inspection and evaluation. 

SUMMARY 

Accordingly, a system and method are provided for data 
encryption. In an embodiment, at least one computing device 
has instructions that, when executed, cause the at least one 
computing device to receive at least one block of the data, 
modify the at least one block of data to cause each unique data 
element within the at least one block to appear with a respec 
tive predetermined frequency ratio, and to encrypt the block 
of data into ciphertext based at least on an encryption key. 

In one or more embodiments, the at least one computing 
device may generate the encryption key or may receive the 
encryption key. Further, the encryption key may be generated 
based at least on a key exchange algorithm. 

Moreover, the at least one computing device may be con 
?gured to decrypt at least one other block of ciphertext and 
modify the decrypted ciphertext so that each unique data 
element of the decrypted ciphertext appears in the unique data 
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2 
element’s ratio prior to being modi?ed with a respective 
predetermined frequency ratio. 

In one or more embodiments, the at least one block of data 
comprises a plurality of blocks of data, and further wherein 
the encryption key is different for at least one of the plurality 
of blocks of data. Further, in one or more embodiments, the at 
least one computing device has instructions that, when 
executed, cause the at least one computing device to derive 
the different encryption key from a respective one of the 
plurality of blocks of data. 

In one or more embodiments, the at least one computing 
device further receives instructions that, when executed, 
cause the at least one computing device to modify a character 
code associated with the data, wherein the respective prede 
termined frequency ratio is achieved by at least using the 
modi?ed character code. The at least one computing device 
may have further instructions that, when executed, cause the 
at least one computing device to receive the modi?ed char 
acter code. Moreover, the modi?ed character code may 
include a plurality of characters that contain a substantially 
same distribution of elements. 

In another embodiment, a system and method for encrypt 
ing data is provided that includes constructing at least one 
character code to cause each character in the at least one 
character code to have substantially a same distribution of 
elements. Further, the at least one character code is stored on 
at least one computing device, and the data are encoded with 
the stored at least one character code. Moreover, the encoded 
data are encrypted into ciphertext by the at least one comput 
ing device, based at least on one encryption key. 

Other features and advantages of the present application 
will become apparent from the following description, which 
refers to the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

For the purpose of illustration, there is shown in the draw 
ings an embodiment which is presently preferred; it being 
understood, however, that the teachings herein are not limited 
to the precise arrangements and instrumentalities shown. 

FIG. 1 is a block diagram showing the generation of a 
pre-key. 

FIG. 2 is a block diagram showing an example of an auto 
shuf?e algorithm that operates on the pre-key and outputs an 
encryption key. 

FIG. 3 illustrates the encryption of data. 
FIG. 4 illustrates the decryption of data. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The present application regards conditioning data to pro 
vide encryption methods that are substantially impervious to 
cryptanalytic attack, such as via frequency analysis. 

Referring to FIG. 1, an example method for encrypting data 
in accordance with the present application is described. A 
suitable key exchange algorithm, such as Dif?e-Hellman or 
ElGamal, is used to establish common key 1, which may be, 
for example, a 1024-bit common key for communication, 
referred to herein, generally, as “DHK.” In one or more 
embodiments, more than one DHK can be used per message. 
Key 1 is split into two halves (2 and 3) each of which is hashed 
using a Secure HashAlgorithm, such as SHA-512, SHA 4 and 
SHA 5 respectively. The hashes are then interleaved in mixer 
6 such that each successive eight bits of SHA 4 are followed 
by the respective successive eight bits of SHA 5. The inter 
leaving process produces a 1024-bit string 7, which is then 
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partitioned into eight 128-bit seed values 8. Each seed value 
may be used to initialize a cryptographically strong pseudo 
random number generator (“CSPRNG”) module 9. 

Although the example shown in and described with refer 
ence to FIG. 1 regards use of eight independent CSPRNGs (or 
pseudo random number generators (“PRNGs”) in general), 
many other possible encryption methods for producing pseu 
dorandom sequences are envisioned and supported by the 
teachings herein. The actual choice of PRNG may depend, for 
example, on the speci?c application, platform, and environ 
ment in which the encryption takes place. For example, a 
single CSPRNG may be used to generate all eight pseudoran 
dom streams. Alternatively, multiple PRNGs of different 
designs may be employed. 

In an embodiment, eight pseudorandom streams are gen 
erated, each being composed of 128 32-bit numbers, which 
may be integers or decimals. 

Continuing with reference to FIG. 1, the eight pseudoran 
dom streams from CSPRNG 9 are interleaved in mixer 10 
such that each successive 32 bits, d, of the ?rst stream are 
followed by the respective successive 32 bits of the second 
stream, of the third stream, and so on through to the eighth 
stream. Thereafter, ?ve elements, d, are removed from this 
1024-element array, L, by array processor 11. The removal 
may be accomplished in numerous suitable ways. In an 
embodiment that is based on an integer stream and beginning 
with d1, array processor 11 evaluates dl- (Mod 1024)+1 until 
?ve unique position pointers are found. Thereafter, the ele 
ments occupying the indicated positions are removed. 

In an alternate embodiment, the CSPRNG 9 simply outputs 
1019 32-bit values, so that no elements require removal. 

To ensure a bijective encryption function (one with a 
unique inverse), the resulting 1019-element random array is 
then indexed from 1 to 1019 by array processor 11 to produce 
array, T: 

Thereafter, T is sorted on di and only the resulting sequence 
of indices are extracted. This yields an unpredictable and 
unknowable sequence of 1019 unique position pointers. This 
sequence is referred to herein, generally, as the pre-key, J 12. 

If the CSPRNG 9 is properly implemented and has not been 
compromised by an adversary, the non-linearity of the hash 
function ensures that, without knowing the exact value of 
DHK 1, it is highly unlikely that speci?c knowledge of J 12 
will be determined. 

It is envisioned herein that the generation of J 12 is not 
limited to the precise methods or techniques with respect to 
the use of cryptographic primitives, described above. Many 
suitable alternative combinations and con?gurations are use 
able in accordance with the teachings herein. For example, I 
12 may be generated using a Knuth-type shuf?e or a hard 
ware-based source of entropy and thereafter directly shared 
using a secure channel. 

Although I 12 may be used to directly shuf?e blocks of 
data, it is possible to incorporate more than one shuf?e algo 
rithm. If the block and pre-key lengths are a prime number, 
then the sequence of position pointers may be autoshuf?ed in 
a bijective fashion. As used herein, the term, autoshuf?e, 
refers generally to an algorithm that rearranges the order of a 
sequence in a non-linear manner and based on the content and 
number-theoretic characteristics of the sequence itself. More 
over, the encryption method described herein is also suitable 
for use with non-prime block and pre-key lengths. In cases of 
non-prime lengths, however, having fewer elements whose 
values are coprime to the sequence length is not as ef?cient 
and requires greater care in implementation. Depending on 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
the speci?c design of the CSPRNG 9, autoshuf?ing J 12 helps 
to erase any statistical properties that might yield useful infor 
mation, such as in a cryptanalytic attack. 

FIG. 2 illustrates an example method for autoshuf?ing a 
key of prime length, 7». To start, generator sequence and 
matrix processor 13 constructs generator sequence Gl using 
an offset value 6 derived from J 12. To minimize any corre 
lation between the input and output of the auto shuf?e method, 
6 is preferably not equal to 1, (7t+1)/2, 7t—1, or 7» itself. While 
there are many effective ways to choose a random value for e, 
the value in position 1 of] 12 (i.e., 11) may used as a pointer 
to locate the I1 ’1’ element of J , though the value in any position, 
not just position 1, may be used. For example, using an 11 
element array a:{4, 7, 1, 8, 9, 3, 11, 6, 5, 10, 2}, the ?rst 
element al:4. Element 4 (a4) sets the value of 6 equal to eight 
(6:8). 

Ifthe Jl’h elementis equal to 1, 510, 1018, or 1019, thenthe 
I 1th element is preferably used in lieu thereof. This process of 
examining subsequent elements may be repeated, as neces 
sary, in order to establish a value for e that is not equal to 1, 
510, 1018, or 1019. 
To construct G1, generator sequence and matrix processor 

13 preferably begins with the number “1.” Successive ele 
ments are obtained by adding 6 to the current value and taking 
the result modulo 1019. For example, with 6:273, 

G1:{1,274,547,820,74,347,620,893,147,420,693, . . . 

,747}. 
Finally, the value “0” is replaced with the value “1019.” 

Next, a base matrix M 14 is preferably generated by setting 
the ?rst row to G1. Each successive row Gl- rotates the previ 
ous row one position to the left. Thus, for the present example, 

G2:{274,547,820,74,347,620,893,147,420,693,966, . 
. . ,1}. 

The last row G1019 is equivalent to G1 rotated 1018 positions 
to the left, or in this example: 

G1019:{747,1,274,547,820,74,347,620,893,147,420,. 

Continuing with reference to FIG. 2, shuf?e matrix S 15 is 
then obtained by sorting the rows of base matrix M 14 on J 12. 
The hash mark “#” in the subscript of the rows SI. of shuf?e 
matrix S 15 indicates that the row position of each GUJ) is not 
?xed. Instead, the row position of each GUJ) from base matrix 
M 14 is determined by the process of transposing {1, M}, 
sorting the 1019 resulting pairs of the form {Integer, Array} 
on the integer part, and extracting only the sequence of arrays. 

Array processor 16 operates to shuf?e J 12 using the rows 
ofS 15 as follows. First, array processor 16 shuf?es Jusing Sl 
(row 1 of S), and then shuf?es the output of this operation on 
S2. Array processor 16 continues to shuf?e each output on the 
following row, SM. After 1019 shuf?e operations, the ?nal 
output is encryption key E 17, which is an unpredictable and 
unknowable sequence of 1019 position pointers with stan 
dard statistical measures and ?xed point distribution that are 
substantially indistinguishable from those of a true random 
permutation of 1019 elements. 

Although the example method shown in and described with 
reference to FIG. 2 includes the use of blocks (and respective 
keys) of length 1019, one skilled in the art will recognize that 
other lengths are supported. Prime lengths are useful speci? 
cally when implementing the preferred auto shuf?e method 
described herein. Smaller blocks reduce both the length the 
encryption key and the bit length of its constituent elements. 
Moreover, it is not necessary to use blocks having a ?xed size. 
For example, use of a “safe prime” (e.g., 101 9) makes it trivial 
to employ a combination of block sizes of 1019 and 509 (i.e., 
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a Sophie Germain prime) in which the size is determined 
either by the parity of the sequence of elements in J 12 or by 
the length of the data to be encrypted. It may further be 
desirable to adjust the size of blocks speci?cally to best match 
the length of the data to be encrypted. 

Continuing with reference to the example method in FIG. 
2, E 17 is used to shuf?e data that has been frequency-condi 
tioned for encryption. The purpose of conditioning the data in 
this manner is to render the data substantially immune to a 
cryptanalytic attack that uses frequency analysis. By ensuring 
that each unique data element appears with a predetermined 
frequency ratio, the data are frequency-conditioned. In an 
example embodiment, given k unique elements, the ratio of 
the appearance of each k is set to substantially equal 1/k. 
Thus, for binary data in a permutation-based block cipher, the 
predetermined frequency ratios for the symbols “1” and “0” 
are 50% for each. If k is not a factor of the block length, the 
actual ratios may differ slightly from the ideal predetermined 
frequency ratios over the length of a block. In a preferred 
embodiment, the length of the conditioned data to be 
encrypted is a multiple of k. 

In accordance with the teachings herein, two basic methods 
for conditioning blocks of plaintext or data, herein referred to 
as “P” (19 FIG. 3), are envisioned. 

In an embodiment, frequency-conditioning is accom 
plished by a form of coding referred to herein, generally, as 
parity adjusted character code (PACC). As described in 
greater detail below, and with reference to Table 1A, Table 
1B, and Table 2, a PACC is particularly useful to deter a 
frequency analysis attack. 

Table 1A shows Example 1 of a Parity Adjusted Character 
Code. Table 1B shows a mapping of extended characters for 
Example 1 of a Parity Adjusted Character Code. Table 2 
shows Example 2 of a Parity Adjusted Character Code. 

Referring now to Table 1A and Table 1B, below, one 
example of PACC is provided. The foundation of PACC is 
relatively simple and can be implemented in a variety of 
different ways. PACC may be adapted to any language, 
including as set forth in Table 1, English. As withASCII, each 
character is encoded by one byte of information (a Unicode 
style, 16-bit format or, alternatively, a custom length format 
may be employed). For example, given was the ordered set of 
values for one byte, 

Thereafter, all upper and lower case letters, all numbers, 
and the most common punctuation are assigned to the 8-bit 
numbers represented by w for which 

There are 70 (8C4) of these values. The 27 other printable 
ASCII characters may be carefully be assigned by dividing 
them between the two groups for which 

For example, if the code for the left bracket symbol “[” 
contains a combination of 3 ones and 5 zeros, the code for the 
right bracket symbol “]” would contain a combination of 5 
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6 
ones and 3 zeros. Because these symbols are most often used 
in pairs, this approach helps to preserve parity in a given block 
of data. 

TABLE 1A 

Bit Sum = 4 (Total: 70) 

Char Binary Dec 

space 00001111 15 
1 00010111 23 
“ 00011011 27 

‘ 00011101 29 

, 00011110 30 
- 00100111 39 

. 00101011 43 

0 00101101 45 
1 00101110 46 
2 00110011 51 
3 00110101 53 
4 00110110 54 
5 00111001 57 
6 00111010 58 
7 00111100 60 
8 01000111 71 
9 01001011 75 
7 01001101 77 
A 01001110 78 
B 01010011 83 
C 01010101 85 
D 01010110 86 
E 01011001 89 
F 01011010 90 
G 01011100 92 
H 01100011 99 
I 01100101 101 
J 01100110 102 
K 01101001 105 
L 01101010 106 
A4 01101100 108 
N' 01110001 113 
0 01110010 114 
P 01110100 116 
Q 01111000 120 
R 10000111 135 
S 10001011 139 
T 10001101 141 
U' 10001110 142 
\’ 10010011 147 
VV 10010101 149 
X 10010110 150 
Y 10011001 153 
Z 10011010 154 
a 10011100 156 
b 10100011 163 
0 10100101 165 
d 10100110 166 
e 10101001 169 
f 10101010 170 
g 10101100 172 
h 10110001 177 
1 10110010 178 
j 10110100 180 
k 10111000 184 
1 11000011 195 
Hi 11000101 197 
n 11000110 198 
0 11001001 201 
p 11001010 202 
q 11001100 204 
r 11010001 209 
s 11010010 210 
t 11010100 212 
u 11011000 216 
v 11100001 225 
w 11100010 226 
x 11100100 228 
y 11101000 232 
2 11110000 240 



US 8,712,040 B2 

TABLE 1B TABLE 2-continued 

Char Binary Dec Bit Surn = 4 (Total: 70) 

Bit Surn = 3 (Total: 14) Char Binary Dec 
5 

LF 00000111 7 p 01000111 71 
( 00001011 11 q 01001011 75 
< 00001101 13 r 01001101 77 
[ 00001110 14 s 01001110 78 
{ 00010011 19 t 01010011 83 
# 00010101 21 10 u 01010101 85 
$ 00010110 22 v 01010110 86 
62 00011001 25 “1 01011001 89 
* 00011010 26 x 01011010 90 
+ 00011100 28 y 01011100 92 
/ 00100011 35 1 01100011 99 
: 00100101 37 15 0 01100101 101 
1 00100110 38 1 01100110 102 
~ 00101001 41 2 01101001 105 

BHISun1= 5 (Ibtm:13) 3 01101010 106 
4 01101100 108 

CR. 11111000 248 5 01110001 113 
) 11110100 244 6 01110010 114 
> 11110010 242 20 7 01110100 116 
] 11110001 241 8 01111000 120 
} 11101100 236 9 10000111 135 
96 11101010 234 space 10001011 139 

; 11101001 233 1 10001101 141 
= 11100110 230 “ 10001110 142 

@Q 11100101 229 25 # 10010011 147 
\ 11100011 227 8 10010101 149 
" 11011100 220 96 10010110 150 

i, 11011010 218 &. 10011001 153 
11011001 217 ‘ 10011010 154 

( 10011100 156 
30 ) 10100011 163 

Tables 1A and 1B show a sample character mapping for the * 10100101 165 
common English symbols. Of course, many other mapping + 1818(555? 12$ 
schemes are supported by the present application, any of Z 10101010 170 
whlch can be des1gned and chosen, for example, to max1m12e . 10101100 172 

encoding e?iciency for a given computing environment and 35 / 185883? language~ _ ; 10110100 180 

Table 2, below, shows an altemat1ve and more robust map- < 10111000 134 
ping that includes one byte for converting lowercase to upper- = 11000011 195 
case, and a second byte for mapping to an alternate character 3 588813? 13; 
set. Here, the CAP byte is used to convert lowercase letters to 40 11001001 201 
uppercase. Upon decoding, the conversion effectively sub- [ 11001010 202 
tracts 32 from the subsequent ASCII character code, thereby \ 11001100 204 
converting the lower case letter to a capital letter. The ALT 1 581883)?) 5?: 
byte 1nd1cates that the subsequent byte(s) or block'(s) are to be ‘ 11010100 212 
mappedus1ng a d1fferent, predetermmed andposs1bly custom 45 } 11011000 216 
character set. Indeed, using this scheme, the ALT byte may be ~ 11100001 225 
employed to indicate the use of a different permutation of LP 11100010 226 
h d . . h. th tPACC t CR 11100100 228 c arter-to-co e mapp1ngs W1t 1n e curren sys em. CAP 11101000 232 

[\LT 11110000 240 

TABLE2 w 

Bit Sum = 4 (Total; 70) By extension and in an alternate embodiment, any block 
I can specify the precise permutation of charter-to-code map 

Char Binary Dec pings to be used within the established PACC. This may take 
a 00001111 15 55 many forms such as: 
b 00010111 23 1) an explicit assignment list; 
0 00011011 27 2) an ex licit ermutation list' 
d 00011101 29 P P _ ’ _ _ _ 

6 00011110 30 3) a seed value to be used 1n COHJUIICUOII W1th a CSPRNG 
f 00100111 39 for rearranging the assignments using, for example, a Knuth 
% 22121121 :12 60 typeshumewr 
i 00101110 46 4) a precoded instruction sequence for how to reassign the 
j 00110011 51 charter-to-code mappings for a given section of the plaintext 
k 00110101 53 (e.g., parameters for performing an autoshuf?e). 
1 00110110 54 For example using only the ?rst 5 entries in Table 2 
n1 00111001 57 ’ ’ 

n 00111010 58 65 o 001n1m1 60 b:00010111 

c:00011011 
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d:0001 1 101 
e:0001 1 110 

in an embodiment using an explicit assignment list, the ?rst 
block of plaintext might begin 

{0001110100011110000101110000111100011011} 
indicating that the following charter-to-code assignments are 
being used: 

a:0001 1 101 
b:0001 1 1 10 
c:000101 1 1 
d:00001 1 11 
e:0001 101 1. 
In the speci?c case of a binary-based PACC using an odd 

length code, there cannot be a precisely equal distribution of 
elements. For example, a 9-bit code contains either 5 ones and 
4 zeros, or 4 ones and 5 zeros. Codes comprising a PACC 
contain the substantially same distribution of elements. 

Thus, and in accordance with an embodiment that uses this 
method, any alphanumeric character may be transformed into 
any other character by a simple permutation rule. Encrypting 
frequency-conditioned data in conjunction with the block 
permutation cipher, substantially as described above, is 
equivalently secure to the known and provably secure one 
time pad method. Unlike the one-time pad which requires the 
key to be a random string, the key employed according to the 
teaching herein is a random permutation. Similar to the case 
of a one-time pad, if the key is a truly random permutation, 
then, theoretically, any given ciphertext can be deciphered 
into any plaintext message of the same length. 
By extension, any word or message can be transformed into 

any other word or message of the same length, simply by 
rearranging its constituent ones and zeros. For example, the 
following two messages are both 18 characters (144 bits) in 
length (including spaces and punctuation): 

Message 1: “Attack immediately” 
Message 2: “Quick, run away!!!” 
Using the PACC shown in Table 1, 72 of the constituent bits 

for each message are ones and the other 72 are zeros. Either 
message can be bitwise rearranged and thereby transformed 
into the other. There are (72!)2, or approximately 3.7><10207 
different ways to map Message 1 to Message 2. Moreover, 
any 144-bit long ciphertext can be decrypted into either mes 
sage depending on what key is chosen by a potential adver 
sary. 

Other base representations other than base 2 may be used in 
accordance with the teachings herein. Ensuring all digits (or 
symbols) appear with substantially equal frequency, any such 
frequency conditioning technique can be employed in a man 
ner consistent with the present application. 

Moreover and in an alternative embodiment, character pro 
cessing methods other than PACC may be used in accordance 
with the teachings herein. For example, a compression algo 
rithm (e. g., gzip) may be used on plaintext prior to encryption. 
In this case, the compressed ?le may be padded to achieve 
parity, as discussed below. 
A block length of 1019 bits can accommodate 1016 bits of 

8-bit PACC encoded plaintext or up to 1019-bits of a general 
purpose parity-balanced ASCII or compressed ?le. Thus, 
when employing 8-bit PACC, 508 of the bits should be con 
?gured in each block to be ones. 

Referring now to FIG. 3, block encoder/processor 18 
serves to convert P 19 into PACC and appropriately pads 
blocks by employing the following method. In the case of 
blocks having variable lengths, block encoder/processor 18 
also serves to partition P 19, appropriate to the speci?c imple 
mentation. 
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10 
If plaintext message P 19 contains a fully frequency-bal 

anced encoding (e. g., the 70 primary PACC characters from 
Tables 1A and 1B, or the PACC encoding shown in Table 2), 
P 19 need only be padded to a multiple of 1016 bits using an 
equal number of ones and zeros (or [1019/n] bits for an n-bit 
PACC, where “L 1” denotes the Floor function). 

In cases where the plaintext message or ?le P 19 does not 
have a monobit frequency of 1/2 (e.g., ASCII or compressed 
formats), the length to which the message is to be padded to 
achieve parity is calculated. This value is referred to herein, 
generally, as the parity point, 6. When using 1018 bits of data 
and 1 bit of padding, once 6 is calculated and if 6<101 8, the 
data block is to padded to length 6 accordingly (with ones or 
zeros). Denoting the number of ones in a binary sequence by 
N1 and the number of zeros by NO, the remainder, r (where 
F1018—6), of the data block will be ?lled such that 
NIINOIr/2. 

If 6>1018, block encoder/processor 18 calculates INl —NO| 
at each bit bl- in binary representation of plaintext P 19 to 
determine the value of i for which lNl—NOI +i:101 8. In other 
words, this value indicates the bit for which the current count 
difference, when added to the current bit index exactly ?lls a 
1018-bit data block. Thus, the number of frequency-condi 
tioned plaintext bits that will appear in the ?rst 1018 bits is 
given by i. The remainder r of the data block is then padded to 
parity. 

For example, for the 12-bit data block p:{10101110110} 
that contains 7 ones and 5 zeros, 6:10, the bit at which there 
are 6 ones and 4 zeros. Here, at this point in the block, 
|6—4| +10:12. The frequency-conditioned data block thus 
becomes {100101110100} with 6 ones and 6 zeros, and the 
last two data bits of p, {10} are carried to the start of the 
subsequent block. 
The same process of determining 6 and then padding 

accordingly is applied to the subsequent bits in the plaintext, 
thereby generating as many frequency-conditioned blocks as 
required to represent the full message or ?le as a binary 
sequence with a monobit frequency of 1/2. Depending on the 
speci?c implementation, it may be appropriate to prepend 
each block with a header that encodes the parity point. In this 
case, the header can be encrypted by an XOR with a random 
string derived from the key establishment process (e. g., 1, 4, 
9, 12). The header only has useful informational value after 
the ciphertext has been decoded. 
When using 8-bit PACC with 1019-bit blocks, three bits 

(e.g., {101}) must be added to the 127 byte frequency-con 
ditioned plaintext block before encrypting the frequency 
conditioned plaintext in order to have 1019 elements. For 
general purpose parity-balanced data, one bit is preferably 
added. Depending on the speci?c implementation, this bit 
may be either padding or an additional data bit. 

Although the above-described examples employ a block 
cipher technique, frequency-conditioning data in accordance 
with the teachings herein is not limited to use in block ciphers. 
Other encryption techniques such as stream cipher tech 
niques, may be used. For example, blocks may be of any 
arbitrary size, including the full length of the plaintext P 19, 
and the output of a CSPRNG may be XORed with a fre 
quency-conditioned block of data in a manner consistent with 
the teachings herein. 

After block encoder/processor 18 converts P 19 into a 
frequency-conditioned format and appropriately pads each 
block, key manager 20 may use output from block encoder/ 
processor 18 to determine a length of the key sequence, such 
that each block may be encrypted with a unique key of the 
appropriate length. Said key sequence can be obtained by 
establishing a new DHK 1, via a secure channel or, altema 
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tively, by expanding the current key using various stages of 
key establishment. In a preferred embodiment, the key 
sequence for additional blocks can be derived from a fre 
quency-conditioned seed encrypted within a block of data. 
This seed may then be used in conjunction with a CSPRNG, 
in a manner similar to that described above and with reference 
to FIG. 1. 

In an example that includes 101 9-bit blocks of data with the 
8-bit PACC shown in Table 2, the ?rst block may simply 
contain: 

{{560 bits explicit PACC assignments}, {459 bits 
CSPRNG seed} 

Subsequent blocks may then contain the plaintext message 
which has been encoded by block encoder/processor 18 with 
the designated PACC assignments and shuf?ed by the output 
of a CSPRNG initialized using the speci?ed seed. 

Generally, any block may substantially take the form of a 
collection of one or more substrings, such as in the example 
below: 

where the substrings 
v:control or instruction character(s) (e. g., “ALT”) 
w:speci?cation of charter-to-code mappings 
x:CSPRNG seed 
y:data 
eradding 
may appear in a suitably arranged order and in multiple 
instances. One skilled in the art will recognize that data 
blocks may contain other suitable substrings, as well. 

Moreover, it is possible to generate new key material in 
numerous ways consistent with the teachings herein. Begin 
ning with E 17, key manager 20 generates key sequence K 21. 
For a one block message, K will be equal to E (KIE). The 
binary data B 22 is encrypted by array processor 23 using K 
21 in the following manner. 

For each block, an array Q is generated by attaching each 
element of K 21 to the corresponding bit bl. in B 22. Using the 
?rst block as an example, 

Sorting Q on K 21 shuf?es B 22 which, when extracted, 
yields ciphertext C 24. If F is the bijective function that 
applies K 21 to B 22, then F(B):C. 

Referring to FIG. 4, to decrypt C 24, an array, R, is gener 
ated by array processor 25 which associates an index value 
with each element of K 21: 

Sorting R on K and extracting the shuf?ed indices produces 
the decryption key sequence, K' 26. 

Thereafter, an array, Q', is generated by attaching each 
element of K' to the corresponding bit cl- in C 24: 

Sorting Q' on K' unshuf?es C 24 which, when extracted, 
yields B 22. If F—1 is the inverse function that applies the 
decryption key K' to C, then F_1(C):B. 
Once B 22 is retrieved, block decoder/processor 27 strips 

any post data padding, and converts the remaining binary 
code is to plaintext P 19 consistent with the chosen method of 
data conditioning. 

Although the present application has been described in 
relation to particular embodiments thereof, many other varia 
tions and modi?cations and other uses will become apparent 
to those skilled in the art. It is preferred, therefore, that the 
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12 
present application be limited not by the speci?c disclosure 
herein, but only by the appended claims. 

What is claimed: 
1. A system for data encryption, the system comprising: 
at least one computing device having instructions that, 
when executed by a data processor device, cause the at 
least one computing device: 

to receive at least one block of the data comprising kunique 
data elements; to modify the at least one block of data to 
cause each of the k unique data elements within the at 
least one block to appear with a respective predeter 
mined frequency ratio substantially equal to 1/k; 

wherein the modi?cation of the at least one block of data is 
performed according to a character code representing 
alphanumeric characters, such that each character is rep 
resented in the character code by a plurality of the unique 
data elements; and 

to encrypt the block of data into ciphertext based at least on 
an encryption key. 

2. The system of claim 1, wherein the at least one comput 
ing device has further instructions that, when executed, cause 
the at least one computing device to generate the encryption 
key. 

3. The system of claim 1, wherein the at least one comput 
ing device has further instructions that, when executed, cause 
the at least one computing device to receive the encryption 
key. 

4. The system of claim 1, wherein the encryption key is 
generated based at least on a key exchange algorithm. 

5. The system of claim 1, further comprising a decrypter 
con?gured to decrypt the block of ciphertext and to modify 
the decrypted ciphertext so that each unique data element of 
the decrypted ciphertext appears in the unique data element’ s 
ratio prior to being modi?ed to appear with the respective 
predetermined frequency ratio. 

6. The system of claim 1, wherein the at least one block of 
data comprises a plurality of blocks of data, and further 
wherein the encryption key is different for at least one of the 
plurality of blocks of data. 

7. The system of claim 6, wherein the at least one comput 
ing device has further instructions that, when executed, cause 
the at least one computing device to derive the different 
encryption key from a respective one of the plurality of blocks 
of data. 

8. The system of claim 1, wherein at least one of the at least 
one block of data has a length equal to a prime number. 

9. The system of claim 1, wherein each of the at least one 
block of data has a respective variable length. 

10. The system of claim 1, wherein the modifying the at 
least one block comprises causing a plurality of data elements 
to appear with respective predetermined frequency ratios, and 
further wherein each of the respective predetermined fre 
quency ratios is substantially equal. 

11. The system of claim 1, wherein the at least one com 
puting device further receives instructions that, when 
executed, cause the at least one computing device to modify a 
character code associated with the data, 

wherein the respective predetermined frequency ratio is 
achieved by at least using the modi?ed character code. 

12. The system of claim 11, wherein the at least one com 
puting device has further instructions that, when executed, 
cause the at least one computing device to receive the modi 
?ed character code. 

13. The system of claim 11, wherein the modi?ed character 
code includes a plurality of characters that contain a substan 
tially same distribution of elements. 
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14. The system of claim 11, wherein at least one of the at 
least one block of data contains one other modi?ed character 
code. 

15. The system of claim 1, Wherein the at least one com 
puting device has further instructions that, When executed, 
cause the at least one computing device to pad each of the at 
least one block of data, Wherein the respective predetermined 
frequency ratio is achieved at least using the padding. 

16. The system of claim 1, Wherein the at least one com 
puting device has further instructions that, When executed, 
cause the at least one computing device to rearrange positions 
of data elements in each of the at least one block of data, and 
further Wherein the encrypting comprises the rearranging. 

17. The system of claim 1, Wherein the at least one com 
puting device has further instructions that, When executed, 
cause the at least one computing device to modify the encryp 
tion key based on at least one inherent property of the encryp 
tion key, Wherein the at least one inherent property comprises 
one or more of a number theoretic characteristic, an element 
value, and a key length. 

18. A method for encrypting data, the method comprising: 
constructing at least one character code representing char 

acters, such that each character is represented in the at 
least one character code by a plurality of unique data 
elements, and each character includes a ?rst unique data 
element having substantially a same frequency distribu 
tion in the character as every remaining unique data 
element of the plurality of unique data elements; 
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storing the at least one character code on at least one 

computing device; 
encoding the data, by the at least one computing device, 

according to the stored at least one character code to 
generate encoded data; and 

encrypting the encoded data into ciphertext by the at least 
one computing device, based at least on one encryption 
key. 

19. The method of claim 18, Wherein the encrypting 
includes rearranging the encoded data. 

20. A method for data encryption by a computing device 
comprising a data processor, the method comprising: 

receiving, by at least one computing device, at least one 
block of the data comprising k unique data elements; 

modifying, by the at least one computing device, the at 
least one block of data to cause each of the k unique data 
elements Within the at least one block to appear With a 
respective predetermined frequency ratio substantially 
equal to 1/k; 
Wherein the modi?cation of the at least one block of data 

is performed according to a character code represent 
ing alphanumeric characters, such that each character 
is represented in the character code by a plurality of 
the unique data elements; and encrypting, by the at 
least one computing device, the block of data into 
ciphertext based at least on an encryption key. 

21. The system of claim 1, Wherein each unique data ele 
ment is a bit and k:2. 

* * * * * 


