
USOO8712040B2

(12) Unlted States Patent (10) Patent N0.2 US 8,712,040 B2
Brothers (45) Date of Patent: Apr. 29, 2014

(54) DATA-CONDITIONED ENCRYPTION 5,285,497 A 2/ 1994 Thatcher, Jr.
METHOD 5,533,128 A 7/1996 Vobach

5,686,715 A 11/1997 Watanabe et a1.
5,727,062 A 3/1998 Ritter

(76) Inventor: Harlan J. Brothers, East Haven, CT 5,838,796 A 11/1998 Mittenthal
(Us) 5,902,929 A 5/1999 Okamoto et a1.

6,052,786 A 4/2000 Tsuchida
(*) Notice: Subject to any disclaimer, the term of this 6,097,812 A 8/2000 Friedman

patent is extended or adjusted under 35 I?uySter
, , 1res

U~S~C~ 1549’) by 256 days~ 6,295,093 B1 9/2001 Park et a1.
6,459,792 B2 * 10/2002 Ohmori et a1. 380/37

(21) App1.No.: 13/012,534 6,507,678 B2 1/2003 Yahagi
6,553,516 B1 * 4/2003 Suda et a1. 714/702

(22) Filed; Jan_24,2011 6,804,355 B1 10/2004 Graunke
6,909,783 B2 6/2005 Incarnato et a1.

. . . 6,934,388 B1 8/2005 Clark
(65) Prlor Publlcatlon Data 7,006,629 B2 200% Murray

Us 2011/0194687 A1 Aug 11’ 2011 7,026,964 B2 * 4/2006 Baldwin et a1. 341/87
7,313,235 B2 12/2007 Llang
7,529,365 B2 5/2009 Lian

Related US. Application Data 7,707,431 B2 4/2010 Lian:
. . . . 7,711,549 B2 5/2010 F ' b t l.

Provmonal application NO. on 2006/0153382 A1>1< 7/2006 ““““““““ H 380/251
22, 2010- 2006/0291650 A1 * 12/2006 Ananth .. 380/46

2007/0098179 A1* 5/2007 Nave 380/286
51 Int_C1_ 2008/0301431 A1 * 12/2008 Hea 713/150

() 2009/0045988 A1 * 2/2009 Lablans 341/57
(52) gos4lbf/00 (200601) 2009/0132746 A1* 5/2009 Tom 710/300

USPC 380/44; 713/150; 380/37; 380/46 * cited by examiner
(58) Field of Classi?cation Search _ _

CPC G06F 9/30156; G06F 9/30178; H04L Prl’f’wy Exam?” *Andrew Nalven _

ASSZSZIZI’ZZ Examiner i ’ ’ ’9/0894 (74) Attorney, Agent, or Firm * Ostrolenk Faber LLP

USPC 380/44

See application ?le for complete search history. (57) ABSTRACT
A system and method for encryption of data is disclosed. At

(56) References Cited least one block of the data is received. The at least one block

U.S. PATENT DOCUMENTS

4,146,046 A 3/1979 Dobras
4,386,233 A 5/1983 Smid et a1.
4,516,246 A 5/1985 Kenemuth
5,054,067 A 10/1991 Moroney et al.

of data is modi?ed to cause each unique data element Within
the at least one block to appear With a respective predeter
mined frequency ratio. The block of data is encrypted into
ciphertext based at least on an encryption key.

21 Claims, 3 Drawing Sheets

DHK (rm; 1-512) DHK (bits 513-1024)

CSPRNG

CSPRNG

CSPRNG

CSPRNG

CSPRNG

CSPRNG

CSPRNG

CSPRNG

I Array pruoessor II

HMS-element pre-key. J

US. Patent Apr. 29, 2014 Sheet 1 013 US 8,712,040 B2

1
\ 1024-00 Diffie-Hellman Key (DHK)

2 LL ii a
\ DHK (bits 1-512) DHK (bits 513-1024) /

4\ > /1_ “‘ 5
SHA-512 Mixen , SHA-512 /

6 /LL
7

1024-bitstringpartition(8x128 bits) /

<

Seed1

See

(I) (D (D

('3 N

See

Se

See

See @

12

Seed8

CSPRNG

CSPRNG

CSPRNG

CSPRNG /1O

CSPRNG i> Mixer
CSPRNG

CSPRNG

CSPRNG 7%; Array processor

1019-element pre-key, J

FIGURE l

US. Patent Apr. 29, 2014 Sheet 2 0f3 US 8,712,040 B2

12
\ 1019-element pre-key, J

,,\ U
Generator sequence and matrix processor

14 \ Base matrix, M
G(1'1)VG(1‘2)I . G(1,1019)

6(2'1),G(2'2)_ . G(2,1019)

G(3_1)IG(3,2)' . G(3,1019)

G(1Q1gl1),G(1019,2), . G(1019,1019)

15 \ Shuffle matrix, S
S1=G(#'1)‘G(#‘2)_ . G(#,1019)

SZ=G(#,1),G(#|2)I . G(#,1019)

$3=G(#'1)IG(#‘2)I . G(#,1019)

S1019=G(#I1),G(#'2), . G(#,1019)

16 \“ Array processor

1,\ Q
1019-element encryption key, E

FIGURE 2

US. Patent Apr. 29, 2014 Sheet 3 0f3 US 8,712,040 B2

17 19

Encryption key, E Plaintext, P

2,, IL 3 1,
/

Key manager Block encoder/processor

21 U U 22
Key sequence, K Array processor Blnary data, B

23 LL
24

Ciphertext, c /

FIGURE 3

17
Encryption key, E /

24

20 ll
\ Key manager < Ciphertext, C

J L Q 25
26 \ b /

Decryption key sequence, K‘ / Array processor

" 22

Binary data, B /

27\ Block decoder/processor

Q 19
Plaintext, P /

FIGURE 4

US 8,712,040 B2
1

DATA-CONDITIONED ENCRYPTION
METHOD

RELATED APPLICATION

This application is based on and claims priority to US.
Provisional Patent Application Ser. No. 61/297,722, ?led on
Jan. 22, 2010 and entitled GRANULAR PERMUTATION
CIPHER, the entire contents of which are hereby incorpo
rated by reference.

BACKGROUND

1. Field
The present application relates, generally, to data encryp

tion and, more particularly, to conditioning of data to be
substantially immune to frequency analysis.

2. Description of the Prior Art
In an age that depends on the private exchange of sensitive

information, it is critical to have encryption methods that are
fundamentally secure and relatively easy to implement. Such
methods should also be reasonably immune from ever-in
creasing computational power; brute force and nuanced cryp
tanalysis have become relatively easy to apply. To combat
these and other attacks, the key lengths have become longer,
and encryption/decryption algorithms have become signi?
cantly more complicated.

Encryption methods date back to at least the time of the
ancient Greeks, and now take a multitude of forms. The most
robust modern approaches (e.g., Advanced Encryption Stan
dard and Triple Data Encryption Standard) increase effective
ness by combining basic methods, often including crypto
graphic primitives such as hash functions and
cryptographically secure pseudorandom number generators
(CSPRNGs), into cryptographic systems. Indeed, given the
often complicated combinations of techniques and operations
comprising modern ciphers, it is sometimes dif?cult to cat
egorize methods that combine fundamental algorithmic con
cepts, such as those underlying block ciphers, stream ciphers,
substitution, transposition, and permutation ciphers.

It is generally accepted that there is an inverse relation
between what is secure in a provable sense and what is secure
from a practical standpoint. It is, therefore, a common goal in
cryptography to ?nd methods that can rigorously demonstrate
security, while at the same time being practical to implement.
It is also critical that such methods not rely on algorithmic
secrecy, but rather remain open to inspection and evaluation.

SUMMARY

Accordingly, a system and method are provided for data
encryption. In an embodiment, at least one computing device
has instructions that, when executed, cause the at least one
computing device to receive at least one block of the data,
modify the at least one block of data to cause each unique data
element within the at least one block to appear with a respec
tive predetermined frequency ratio, and to encrypt the block
of data into ciphertext based at least on an encryption key.

In one or more embodiments, the at least one computing
device may generate the encryption key or may receive the
encryption key. Further, the encryption key may be generated
based at least on a key exchange algorithm.

Moreover, the at least one computing device may be con
?gured to decrypt at least one other block of ciphertext and
modify the decrypted ciphertext so that each unique data
element of the decrypted ciphertext appears in the unique data

20

25

30

35

40

45

50

55

60

65

2
element’s ratio prior to being modi?ed with a respective
predetermined frequency ratio.

In one or more embodiments, the at least one block of data
comprises a plurality of blocks of data, and further wherein
the encryption key is different for at least one of the plurality
of blocks of data. Further, in one or more embodiments, the at
least one computing device has instructions that, when
executed, cause the at least one computing device to derive
the different encryption key from a respective one of the
plurality of blocks of data.

In one or more embodiments, the at least one computing
device further receives instructions that, when executed,
cause the at least one computing device to modify a character
code associated with the data, wherein the respective prede
termined frequency ratio is achieved by at least using the
modi?ed character code. The at least one computing device
may have further instructions that, when executed, cause the
at least one computing device to receive the modi?ed char
acter code. Moreover, the modi?ed character code may
include a plurality of characters that contain a substantially
same distribution of elements.

In another embodiment, a system and method for encrypt
ing data is provided that includes constructing at least one
character code to cause each character in the at least one
character code to have substantially a same distribution of
elements. Further, the at least one character code is stored on
at least one computing device, and the data are encoded with
the stored at least one character code. Moreover, the encoded
data are encrypted into ciphertext by the at least one comput
ing device, based at least on one encryption key.

Other features and advantages of the present application
will become apparent from the following description, which
refers to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustration, there is shown in the draw
ings an embodiment which is presently preferred; it being
understood, however, that the teachings herein are not limited
to the precise arrangements and instrumentalities shown.

FIG. 1 is a block diagram showing the generation of a
pre-key.

FIG. 2 is a block diagram showing an example of an auto
shuf?e algorithm that operates on the pre-key and outputs an
encryption key.

FIG. 3 illustrates the encryption of data.
FIG. 4 illustrates the decryption of data.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The present application regards conditioning data to pro
vide encryption methods that are substantially impervious to
cryptanalytic attack, such as via frequency analysis.

Referring to FIG. 1, an example method for encrypting data
in accordance with the present application is described. A
suitable key exchange algorithm, such as Dif?e-Hellman or
ElGamal, is used to establish common key 1, which may be,
for example, a 1024-bit common key for communication,
referred to herein, generally, as “DHK.” In one or more
embodiments, more than one DHK can be used per message.
Key 1 is split into two halves (2 and 3) each of which is hashed
using a Secure HashAlgorithm, such as SHA-512, SHA 4 and
SHA 5 respectively. The hashes are then interleaved in mixer
6 such that each successive eight bits of SHA 4 are followed
by the respective successive eight bits of SHA 5. The inter
leaving process produces a 1024-bit string 7, which is then

US 8,712,040 B2
3

partitioned into eight 128-bit seed values 8. Each seed value
may be used to initialize a cryptographically strong pseudo
random number generator (“CSPRNG”) module 9.

Although the example shown in and described with refer
ence to FIG. 1 regards use of eight independent CSPRNGs (or
pseudo random number generators (“PRNGs”) in general),
many other possible encryption methods for producing pseu
dorandom sequences are envisioned and supported by the
teachings herein. The actual choice of PRNG may depend, for
example, on the speci?c application, platform, and environ
ment in which the encryption takes place. For example, a
single CSPRNG may be used to generate all eight pseudoran
dom streams. Alternatively, multiple PRNGs of different
designs may be employed.

In an embodiment, eight pseudorandom streams are gen
erated, each being composed of 128 32-bit numbers, which
may be integers or decimals.

Continuing with reference to FIG. 1, the eight pseudoran
dom streams from CSPRNG 9 are interleaved in mixer 10
such that each successive 32 bits, d, of the ?rst stream are
followed by the respective successive 32 bits of the second
stream, of the third stream, and so on through to the eighth
stream. Thereafter, ?ve elements, d, are removed from this
1024-element array, L, by array processor 11. The removal
may be accomplished in numerous suitable ways. In an
embodiment that is based on an integer stream and beginning
with d1, array processor 11 evaluates dl- (Mod 1024)+1 until
?ve unique position pointers are found. Thereafter, the ele
ments occupying the indicated positions are removed.

In an alternate embodiment, the CSPRNG 9 simply outputs
1019 32-bit values, so that no elements require removal.

To ensure a bijective encryption function (one with a
unique inverse), the resulting 1019-element random array is
then indexed from 1 to 1019 by array processor 11 to produce
array, T:

Thereafter, T is sorted on di and only the resulting sequence
of indices are extracted. This yields an unpredictable and
unknowable sequence of 1019 unique position pointers. This
sequence is referred to herein, generally, as the pre-key, J 12.

If the CSPRNG 9 is properly implemented and has not been
compromised by an adversary, the non-linearity of the hash
function ensures that, without knowing the exact value of
DHK 1, it is highly unlikely that speci?c knowledge of J 12
will be determined.

It is envisioned herein that the generation of J 12 is not
limited to the precise methods or techniques with respect to
the use of cryptographic primitives, described above. Many
suitable alternative combinations and con?gurations are use
able in accordance with the teachings herein. For example, I
12 may be generated using a Knuth-type shuf?e or a hard
ware-based source of entropy and thereafter directly shared
using a secure channel.

Although I 12 may be used to directly shuf?e blocks of
data, it is possible to incorporate more than one shuf?e algo
rithm. If the block and pre-key lengths are a prime number,
then the sequence of position pointers may be autoshuf?ed in
a bijective fashion. As used herein, the term, autoshuf?e,
refers generally to an algorithm that rearranges the order of a
sequence in a non-linear manner and based on the content and
number-theoretic characteristics of the sequence itself. More
over, the encryption method described herein is also suitable
for use with non-prime block and pre-key lengths. In cases of
non-prime lengths, however, having fewer elements whose
values are coprime to the sequence length is not as ef?cient
and requires greater care in implementation. Depending on

20

25

30

35

40

45

50

55

60

65

4
the speci?c design of the CSPRNG 9, autoshuf?ing J 12 helps
to erase any statistical properties that might yield useful infor
mation, such as in a cryptanalytic attack.

FIG. 2 illustrates an example method for autoshuf?ing a
key of prime length, 7». To start, generator sequence and
matrix processor 13 constructs generator sequence Gl using
an offset value 6 derived from J 12. To minimize any corre
lation between the input and output of the auto shuf?e method,
6 is preferably not equal to 1, (7t+1)/2, 7t—1, or 7» itself. While
there are many effective ways to choose a random value for e,
the value in position 1 of] 12 (i.e., 11) may used as a pointer
to locate the I1 ’1’ element of J , though the value in any position,
not just position 1, may be used. For example, using an 11
element array a:{4, 7, 1, 8, 9, 3, 11, 6, 5, 10, 2}, the ?rst
element al:4. Element 4 (a4) sets the value of 6 equal to eight
(6:8).

Ifthe Jl’h elementis equal to 1, 510, 1018, or 1019, thenthe
I 1th element is preferably used in lieu thereof. This process of
examining subsequent elements may be repeated, as neces
sary, in order to establish a value for e that is not equal to 1,
510, 1018, or 1019.
To construct G1, generator sequence and matrix processor

13 preferably begins with the number “1.” Successive ele
ments are obtained by adding 6 to the current value and taking
the result modulo 1019. For example, with 6:273,

G1:{1,274,547,820,74,347,620,893,147,420,693, . . .

,747}.
Finally, the value “0” is replaced with the value “1019.”

Next, a base matrix M 14 is preferably generated by setting
the ?rst row to G1. Each successive row Gl- rotates the previ
ous row one position to the left. Thus, for the present example,

G2:{274,547,820,74,347,620,893,147,420,693,966, .
. . ,1}.

The last row G1019 is equivalent to G1 rotated 1018 positions
to the left, or in this example:

G1019:{747,1,274,547,820,74,347,620,893,147,420,.

Continuing with reference to FIG. 2, shuf?e matrix S 15 is
then obtained by sorting the rows of base matrix M 14 on J 12.
The hash mark “#” in the subscript of the rows SI. of shuf?e
matrix S 15 indicates that the row position of each GUJ) is not
?xed. Instead, the row position of each GUJ) from base matrix
M 14 is determined by the process of transposing {1, M},
sorting the 1019 resulting pairs of the form {Integer, Array}
on the integer part, and extracting only the sequence of arrays.

Array processor 16 operates to shuf?e J 12 using the rows
ofS 15 as follows. First, array processor 16 shuf?es Jusing Sl
(row 1 of S), and then shuf?es the output of this operation on
S2. Array processor 16 continues to shuf?e each output on the
following row, SM. After 1019 shuf?e operations, the ?nal
output is encryption key E 17, which is an unpredictable and
unknowable sequence of 1019 position pointers with stan
dard statistical measures and ?xed point distribution that are
substantially indistinguishable from those of a true random
permutation of 1019 elements.

Although the example method shown in and described with
reference to FIG. 2 includes the use of blocks (and respective
keys) of length 1019, one skilled in the art will recognize that
other lengths are supported. Prime lengths are useful speci?
cally when implementing the preferred auto shuf?e method
described herein. Smaller blocks reduce both the length the
encryption key and the bit length of its constituent elements.
Moreover, it is not necessary to use blocks having a ?xed size.
For example, use of a “safe prime” (e.g., 101 9) makes it trivial
to employ a combination of block sizes of 1019 and 509 (i.e.,

US 8,712,040 B2
5

a Sophie Germain prime) in which the size is determined
either by the parity of the sequence of elements in J 12 or by
the length of the data to be encrypted. It may further be
desirable to adjust the size of blocks speci?cally to best match
the length of the data to be encrypted.

Continuing with reference to the example method in FIG.
2, E 17 is used to shuf?e data that has been frequency-condi
tioned for encryption. The purpose of conditioning the data in
this manner is to render the data substantially immune to a
cryptanalytic attack that uses frequency analysis. By ensuring
that each unique data element appears with a predetermined
frequency ratio, the data are frequency-conditioned. In an
example embodiment, given k unique elements, the ratio of
the appearance of each k is set to substantially equal 1/k.
Thus, for binary data in a permutation-based block cipher, the
predetermined frequency ratios for the symbols “1” and “0”
are 50% for each. If k is not a factor of the block length, the
actual ratios may differ slightly from the ideal predetermined
frequency ratios over the length of a block. In a preferred
embodiment, the length of the conditioned data to be
encrypted is a multiple of k.

In accordance with the teachings herein, two basic methods
for conditioning blocks of plaintext or data, herein referred to
as “P” (19 FIG. 3), are envisioned.

In an embodiment, frequency-conditioning is accom
plished by a form of coding referred to herein, generally, as
parity adjusted character code (PACC). As described in
greater detail below, and with reference to Table 1A, Table
1B, and Table 2, a PACC is particularly useful to deter a
frequency analysis attack.

Table 1A shows Example 1 of a Parity Adjusted Character
Code. Table 1B shows a mapping of extended characters for
Example 1 of a Parity Adjusted Character Code. Table 2
shows Example 2 of a Parity Adjusted Character Code.

Referring now to Table 1A and Table 1B, below, one
example of PACC is provided. The foundation of PACC is
relatively simple and can be implemented in a variety of
different ways. PACC may be adapted to any language,
including as set forth in Table 1, English. As withASCII, each
character is encoded by one byte of information (a Unicode
style, 16-bit format or, alternatively, a custom length format
may be employed). For example, given was the ordered set of
values for one byte,

Thereafter, all upper and lower case letters, all numbers,
and the most common punctuation are assigned to the 8-bit
numbers represented by w for which

There are 70 (8C4) of these values. The 27 other printable
ASCII characters may be carefully be assigned by dividing
them between the two groups for which

For example, if the code for the left bracket symbol “[”
contains a combination of 3 ones and 5 zeros, the code for the
right bracket symbol “]” would contain a combination of 5

20

25

30

35

45

50

55

60

65

6
ones and 3 zeros. Because these symbols are most often used
in pairs, this approach helps to preserve parity in a given block
of data.

TABLE 1A

Bit Sum = 4 (Total: 70)

Char Binary Dec

space 00001111 15
1 00010111 23
“ 00011011 27

‘ 00011101 29

, 00011110 30
- 00100111 39

. 00101011 43

0 00101101 45
1 00101110 46
2 00110011 51
3 00110101 53
4 00110110 54
5 00111001 57
6 00111010 58
7 00111100 60
8 01000111 71
9 01001011 75
7 01001101 77
A 01001110 78
B 01010011 83
C 01010101 85
D 01010110 86
E 01011001 89
F 01011010 90
G 01011100 92
H 01100011 99
I 01100101 101
J 01100110 102
K 01101001 105
L 01101010 106
A4 01101100 108
N' 01110001 113
0 01110010 114
P 01110100 116
Q 01111000 120
R 10000111 135
S 10001011 139
T 10001101 141
U' 10001110 142
\’ 10010011 147
VV 10010101 149
X 10010110 150
Y 10011001 153
Z 10011010 154
a 10011100 156
b 10100011 163
0 10100101 165
d 10100110 166
e 10101001 169
f 10101010 170
g 10101100 172
h 10110001 177
1 10110010 178
j 10110100 180
k 10111000 184
1 11000011 195
Hi 11000101 197
n 11000110 198
0 11001001 201
p 11001010 202
q 11001100 204
r 11010001 209
s 11010010 210
t 11010100 212
u 11011000 216
v 11100001 225
w 11100010 226
x 11100100 228
y 11101000 232
2 11110000 240

US 8,712,040 B2

TABLE 1B TABLE 2-continued

Char Binary Dec Bit Surn = 4 (Total: 70)

Bit Surn = 3 (Total: 14) Char Binary Dec
5

LF 00000111 7 p 01000111 71
(00001011 11 q 01001011 75
< 00001101 13 r 01001101 77
[00001110 14 s 01001110 78
{ 00010011 19 t 01010011 83
00010101 21 10 u 01010101 85
$ 00010110 22 v 01010110 86
62 00011001 25 “1 01011001 89
* 00011010 26 x 01011010 90
+ 00011100 28 y 01011100 92
/ 00100011 35 1 01100011 99
: 00100101 37 15 0 01100101 101
1 00100110 38 1 01100110 102
~ 00101001 41 2 01101001 105

BHISun1= 5 (Ibtm:13) 3 01101010 106
4 01101100 108

CR. 11111000 248 5 01110001 113
) 11110100 244 6 01110010 114
> 11110010 242 20 7 01110100 116
] 11110001 241 8 01111000 120
} 11101100 236 9 10000111 135
96 11101010 234 space 10001011 139

; 11101001 233 1 10001101 141
= 11100110 230 “ 10001110 142

@Q 11100101 229 25 # 10010011 147
\ 11100011 227 8 10010101 149
" 11011100 220 96 10010110 150

i, 11011010 218 &. 10011001 153
11011001 217 ‘ 10011010 154

(10011100 156
30) 10100011 163

Tables 1A and 1B show a sample character mapping for the * 10100101 165
common English symbols. Of course, many other mapping + 1818(555? 12$
schemes are supported by the present application, any of Z 10101010 170
whlch can be des1gned and chosen, for example, to max1m12e . 10101100 172

encoding e?iciency for a given computing environment and 35 / 185883? language~ _ ; 10110100 180

Table 2, below, shows an altemat1ve and more robust map- < 10111000 134
ping that includes one byte for converting lowercase to upper- = 11000011 195
case, and a second byte for mapping to an alternate character 3 588813? 13;
set. Here, the CAP byte is used to convert lowercase letters to 40 11001001 201
uppercase. Upon decoding, the conversion effectively sub- [11001010 202
tracts 32 from the subsequent ASCII character code, thereby \ 11001100 204
converting the lower case letter to a capital letter. The ALT 1 581883)?) 5?:
byte 1nd1cates that the subsequent byte(s) or block'(s) are to be ‘ 11010100 212
mappedus1ng a d1fferent, predetermmed andposs1bly custom 45 } 11011000 216
character set. Indeed, using this scheme, the ALT byte may be ~ 11100001 225
employed to indicate the use of a different permutation of LP 11100010 226
h d . . h. th tPACC t CR 11100100 228 c arter-to-co e mapp1ngs W1t 1n e curren sys em. CAP 11101000 232

[\LT 11110000 240

TABLE2 w

Bit Sum = 4 (Total; 70) By extension and in an alternate embodiment, any block
I can specify the precise permutation of charter-to-code map

Char Binary Dec pings to be used within the established PACC. This may take
a 00001111 15 55 many forms such as:
b 00010111 23 1) an explicit assignment list;
0 00011011 27 2) an ex licit ermutation list'
d 00011101 29 P P _ ’ _ _ _

6 00011110 30 3) a seed value to be used 1n COHJUIICUOII W1th a CSPRNG
f 00100111 39 for rearranging the assignments using, for example, a Knuth
% 22121121 :12 60 typeshumewr
i 00101110 46 4) a precoded instruction sequence for how to reassign the
j 00110011 51 charter-to-code mappings for a given section of the plaintext
k 00110101 53 (e.g., parameters for performing an autoshuf?e).
1 00110110 54 For example using only the ?rst 5 entries in Table 2
n1 00111001 57 ’ ’

n 00111010 58 65 o 001n1m1 60 b:00010111

c:00011011

US 8,712,040 B2

d:0001 1 101
e:0001 1 110

in an embodiment using an explicit assignment list, the ?rst
block of plaintext might begin

{0001110100011110000101110000111100011011}
indicating that the following charter-to-code assignments are
being used:

a:0001 1 101
b:0001 1 1 10
c:000101 1 1
d:00001 1 11
e:0001 101 1.
In the speci?c case of a binary-based PACC using an odd

length code, there cannot be a precisely equal distribution of
elements. For example, a 9-bit code contains either 5 ones and
4 zeros, or 4 ones and 5 zeros. Codes comprising a PACC
contain the substantially same distribution of elements.

Thus, and in accordance with an embodiment that uses this
method, any alphanumeric character may be transformed into
any other character by a simple permutation rule. Encrypting
frequency-conditioned data in conjunction with the block
permutation cipher, substantially as described above, is
equivalently secure to the known and provably secure one
time pad method. Unlike the one-time pad which requires the
key to be a random string, the key employed according to the
teaching herein is a random permutation. Similar to the case
of a one-time pad, if the key is a truly random permutation,
then, theoretically, any given ciphertext can be deciphered
into any plaintext message of the same length.
By extension, any word or message can be transformed into

any other word or message of the same length, simply by
rearranging its constituent ones and zeros. For example, the
following two messages are both 18 characters (144 bits) in
length (including spaces and punctuation):

Message 1: “Attack immediately”
Message 2: “Quick, run away!!!”
Using the PACC shown in Table 1, 72 of the constituent bits

for each message are ones and the other 72 are zeros. Either
message can be bitwise rearranged and thereby transformed
into the other. There are (72!)2, or approximately 3.7><10207
different ways to map Message 1 to Message 2. Moreover,
any 144-bit long ciphertext can be decrypted into either mes
sage depending on what key is chosen by a potential adver
sary.

Other base representations other than base 2 may be used in
accordance with the teachings herein. Ensuring all digits (or
symbols) appear with substantially equal frequency, any such
frequency conditioning technique can be employed in a man
ner consistent with the present application.

Moreover and in an alternative embodiment, character pro
cessing methods other than PACC may be used in accordance
with the teachings herein. For example, a compression algo
rithm (e. g., gzip) may be used on plaintext prior to encryption.
In this case, the compressed ?le may be padded to achieve
parity, as discussed below.
A block length of 1019 bits can accommodate 1016 bits of

8-bit PACC encoded plaintext or up to 1019-bits of a general
purpose parity-balanced ASCII or compressed ?le. Thus,
when employing 8-bit PACC, 508 of the bits should be con
?gured in each block to be ones.

Referring now to FIG. 3, block encoder/processor 18
serves to convert P 19 into PACC and appropriately pads
blocks by employing the following method. In the case of
blocks having variable lengths, block encoder/processor 18
also serves to partition P 19, appropriate to the speci?c imple
mentation.

20

25

30

35

40

45

50

55

60

65

10
If plaintext message P 19 contains a fully frequency-bal

anced encoding (e. g., the 70 primary PACC characters from
Tables 1A and 1B, or the PACC encoding shown in Table 2),
P 19 need only be padded to a multiple of 1016 bits using an
equal number of ones and zeros (or [1019/n] bits for an n-bit
PACC, where “L 1” denotes the Floor function).

In cases where the plaintext message or ?le P 19 does not
have a monobit frequency of 1/2 (e.g., ASCII or compressed
formats), the length to which the message is to be padded to
achieve parity is calculated. This value is referred to herein,
generally, as the parity point, 6. When using 1018 bits of data
and 1 bit of padding, once 6 is calculated and if 6<101 8, the
data block is to padded to length 6 accordingly (with ones or
zeros). Denoting the number of ones in a binary sequence by
N1 and the number of zeros by NO, the remainder, r (where
F1018—6), of the data block will be ?lled such that
NIINOIr/2.

If 6>1018, block encoder/processor 18 calculates INl —NO|
at each bit bl- in binary representation of plaintext P 19 to
determine the value of i for which lNl—NOI +i:101 8. In other
words, this value indicates the bit for which the current count
difference, when added to the current bit index exactly ?lls a
1018-bit data block. Thus, the number of frequency-condi
tioned plaintext bits that will appear in the ?rst 1018 bits is
given by i. The remainder r of the data block is then padded to
parity.

For example, for the 12-bit data block p:{10101110110}
that contains 7 ones and 5 zeros, 6:10, the bit at which there
are 6 ones and 4 zeros. Here, at this point in the block,
|6—4| +10:12. The frequency-conditioned data block thus
becomes {100101110100} with 6 ones and 6 zeros, and the
last two data bits of p, {10} are carried to the start of the
subsequent block.
The same process of determining 6 and then padding

accordingly is applied to the subsequent bits in the plaintext,
thereby generating as many frequency-conditioned blocks as
required to represent the full message or ?le as a binary
sequence with a monobit frequency of 1/2. Depending on the
speci?c implementation, it may be appropriate to prepend
each block with a header that encodes the parity point. In this
case, the header can be encrypted by an XOR with a random
string derived from the key establishment process (e. g., 1, 4,
9, 12). The header only has useful informational value after
the ciphertext has been decoded.
When using 8-bit PACC with 1019-bit blocks, three bits

(e.g., {101}) must be added to the 127 byte frequency-con
ditioned plaintext block before encrypting the frequency
conditioned plaintext in order to have 1019 elements. For
general purpose parity-balanced data, one bit is preferably
added. Depending on the speci?c implementation, this bit
may be either padding or an additional data bit.

Although the above-described examples employ a block
cipher technique, frequency-conditioning data in accordance
with the teachings herein is not limited to use in block ciphers.
Other encryption techniques such as stream cipher tech
niques, may be used. For example, blocks may be of any
arbitrary size, including the full length of the plaintext P 19,
and the output of a CSPRNG may be XORed with a fre
quency-conditioned block of data in a manner consistent with
the teachings herein.

After block encoder/processor 18 converts P 19 into a
frequency-conditioned format and appropriately pads each
block, key manager 20 may use output from block encoder/
processor 18 to determine a length of the key sequence, such
that each block may be encrypted with a unique key of the
appropriate length. Said key sequence can be obtained by
establishing a new DHK 1, via a secure channel or, altema

US 8,712,040 B2
11

tively, by expanding the current key using various stages of
key establishment. In a preferred embodiment, the key
sequence for additional blocks can be derived from a fre
quency-conditioned seed encrypted within a block of data.
This seed may then be used in conjunction with a CSPRNG,
in a manner similar to that described above and with reference
to FIG. 1.

In an example that includes 101 9-bit blocks of data with the
8-bit PACC shown in Table 2, the ?rst block may simply
contain:

{{560 bits explicit PACC assignments}, {459 bits
CSPRNG seed}

Subsequent blocks may then contain the plaintext message
which has been encoded by block encoder/processor 18 with
the designated PACC assignments and shuf?ed by the output
of a CSPRNG initialized using the speci?ed seed.

Generally, any block may substantially take the form of a
collection of one or more substrings, such as in the example
below:

where the substrings
v:control or instruction character(s) (e. g., “ALT”)
w:speci?cation of charter-to-code mappings
x:CSPRNG seed
y:data
eradding
may appear in a suitably arranged order and in multiple
instances. One skilled in the art will recognize that data
blocks may contain other suitable substrings, as well.

Moreover, it is possible to generate new key material in
numerous ways consistent with the teachings herein. Begin
ning with E 17, key manager 20 generates key sequence K 21.
For a one block message, K will be equal to E (KIE). The
binary data B 22 is encrypted by array processor 23 using K
21 in the following manner.

For each block, an array Q is generated by attaching each
element of K 21 to the corresponding bit bl. in B 22. Using the
?rst block as an example,

Sorting Q on K 21 shuf?es B 22 which, when extracted,
yields ciphertext C 24. If F is the bijective function that
applies K 21 to B 22, then F(B):C.

Referring to FIG. 4, to decrypt C 24, an array, R, is gener
ated by array processor 25 which associates an index value
with each element of K 21:

Sorting R on K and extracting the shuf?ed indices produces
the decryption key sequence, K' 26.

Thereafter, an array, Q', is generated by attaching each
element of K' to the corresponding bit cl- in C 24:

Sorting Q' on K' unshuf?es C 24 which, when extracted,
yields B 22. If F—1 is the inverse function that applies the
decryption key K' to C, then F_1(C):B.
Once B 22 is retrieved, block decoder/processor 27 strips

any post data padding, and converts the remaining binary
code is to plaintext P 19 consistent with the chosen method of
data conditioning.

Although the present application has been described in
relation to particular embodiments thereof, many other varia
tions and modi?cations and other uses will become apparent
to those skilled in the art. It is preferred, therefore, that the

5

20

25

30

35

40

45

50

55

60

65

12
present application be limited not by the speci?c disclosure
herein, but only by the appended claims.

What is claimed:
1. A system for data encryption, the system comprising:
at least one computing device having instructions that,
when executed by a data processor device, cause the at
least one computing device:

to receive at least one block of the data comprising kunique
data elements; to modify the at least one block of data to
cause each of the k unique data elements within the at
least one block to appear with a respective predeter
mined frequency ratio substantially equal to 1/k;

wherein the modi?cation of the at least one block of data is
performed according to a character code representing
alphanumeric characters, such that each character is rep
resented in the character code by a plurality of the unique
data elements; and

to encrypt the block of data into ciphertext based at least on
an encryption key.

2. The system of claim 1, wherein the at least one comput
ing device has further instructions that, when executed, cause
the at least one computing device to generate the encryption
key.

3. The system of claim 1, wherein the at least one comput
ing device has further instructions that, when executed, cause
the at least one computing device to receive the encryption
key.

4. The system of claim 1, wherein the encryption key is
generated based at least on a key exchange algorithm.

5. The system of claim 1, further comprising a decrypter
con?gured to decrypt the block of ciphertext and to modify
the decrypted ciphertext so that each unique data element of
the decrypted ciphertext appears in the unique data element’ s
ratio prior to being modi?ed to appear with the respective
predetermined frequency ratio.

6. The system of claim 1, wherein the at least one block of
data comprises a plurality of blocks of data, and further
wherein the encryption key is different for at least one of the
plurality of blocks of data.

7. The system of claim 6, wherein the at least one comput
ing device has further instructions that, when executed, cause
the at least one computing device to derive the different
encryption key from a respective one of the plurality of blocks
of data.

8. The system of claim 1, wherein at least one of the at least
one block of data has a length equal to a prime number.

9. The system of claim 1, wherein each of the at least one
block of data has a respective variable length.

10. The system of claim 1, wherein the modifying the at
least one block comprises causing a plurality of data elements
to appear with respective predetermined frequency ratios, and
further wherein each of the respective predetermined fre
quency ratios is substantially equal.

11. The system of claim 1, wherein the at least one com
puting device further receives instructions that, when
executed, cause the at least one computing device to modify a
character code associated with the data,

wherein the respective predetermined frequency ratio is
achieved by at least using the modi?ed character code.

12. The system of claim 11, wherein the at least one com
puting device has further instructions that, when executed,
cause the at least one computing device to receive the modi
?ed character code.

13. The system of claim 11, wherein the modi?ed character
code includes a plurality of characters that contain a substan
tially same distribution of elements.

US 8,712,040 B2
13

14. The system of claim 11, wherein at least one of the at
least one block of data contains one other modi?ed character
code.

15. The system of claim 1, Wherein the at least one com
puting device has further instructions that, When executed,
cause the at least one computing device to pad each of the at
least one block of data, Wherein the respective predetermined
frequency ratio is achieved at least using the padding.

16. The system of claim 1, Wherein the at least one com
puting device has further instructions that, When executed,
cause the at least one computing device to rearrange positions
of data elements in each of the at least one block of data, and
further Wherein the encrypting comprises the rearranging.

17. The system of claim 1, Wherein the at least one com
puting device has further instructions that, When executed,
cause the at least one computing device to modify the encryp
tion key based on at least one inherent property of the encryp
tion key, Wherein the at least one inherent property comprises
one or more of a number theoretic characteristic, an element
value, and a key length.

18. A method for encrypting data, the method comprising:
constructing at least one character code representing char

acters, such that each character is represented in the at
least one character code by a plurality of unique data
elements, and each character includes a ?rst unique data
element having substantially a same frequency distribu
tion in the character as every remaining unique data
element of the plurality of unique data elements;

10

20

25

14
storing the at least one character code on at least one

computing device;
encoding the data, by the at least one computing device,

according to the stored at least one character code to
generate encoded data; and

encrypting the encoded data into ciphertext by the at least
one computing device, based at least on one encryption
key.

19. The method of claim 18, Wherein the encrypting
includes rearranging the encoded data.

20. A method for data encryption by a computing device
comprising a data processor, the method comprising:

receiving, by at least one computing device, at least one
block of the data comprising k unique data elements;

modifying, by the at least one computing device, the at
least one block of data to cause each of the k unique data
elements Within the at least one block to appear With a
respective predetermined frequency ratio substantially
equal to 1/k;
Wherein the modi?cation of the at least one block of data

is performed according to a character code represent
ing alphanumeric characters, such that each character
is represented in the character code by a plurality of
the unique data elements; and encrypting, by the at
least one computing device, the block of data into
ciphertext based at least on an encryption key.

21. The system of claim 1, Wherein each unique data ele
ment is a bit and k:2.

* * * * *

