Math Bite: Finding e in Pascal's Triangle

HARLAN J. BROTHERS Brothers Technology, LLC Branford, CT 06405 harlan@brotherstechnology.com

Mathematicians have long been familiar with the tidy way in which the *n*th row of Pascal's triangle sums to 2^n (the top row conventionally labeled as n = 0). It is less obvious how the rows behave when we multiply their items.

_						1							1
					1		1						1
				1		2		1					2
			-				3		1				9
		1		4		6		4		1			
	1		5		10		10		5		1		
1		6		15		20		15		6		1	

Let s_n be the product for row n; that is, $s_n = \prod_{k=0}^n {n \choose k}$. On the right-hand side of the figure above, we see the sequence $\{s_n\}$ grows very quickly. To get a sense of its rate of growth, we can look at the ratios of successive terms, $r_n = s_n/s_{n-1}$. The sequence $\{r_n\}$ itself grows rapidly. Examining the ratios of ratios, a familiar pattern emerges:

n	s _n	$r_n = s_n/s_{n-1} \approx$	$r_n/r_{n-1} \approx$
1	1	1	
2	2	2	2
3	9	4.5	2.25
4	96	10.667	2.370
5	2500	26.042	2.441
6	162000	64.800	2.488
1000	$\approx 1.68 \ 10^{215681}$	2.49 10 ⁴³²	2.71692

THEOREM. $\lim_{n\to\infty}\frac{s_{n+1}/s_n}{s_n/s_{n-1}}=e.$

Proof. By direct calculation we get

$$s_n = (n!)^{n+1} \prod_{k=0}^n (k!)^{-2}, \quad n \ge 0$$
$$s_n/s_{n-1} = \frac{n^n}{n!}, \quad n \ge 1, \text{ and}$$
$$\frac{s_{n+1}/s_n}{s_n/s_{n-1}} = \left(1 + \frac{1}{n}\right)^n.$$

Given that $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$, the result follows.

Summary If s_n is the product of the entries in row *n* of Pascal's triangle then $(s_{n+1}/s_n)/(s_n/s_{n-1}) = (1 + 1/n)^n$, which has the limiting value *e*.